2,391 research outputs found

    The Prompt Gamma-Ray and Afterglow Energies of Short-Duration Gamma-Ray Bursts

    Get PDF
    I present an analysis of the gamma-ray and afterglow energies of the complete sample of 17 short duration GRBs with prompt X-ray follow-up. I find that 80% of the bursts exhibit a linear correlation between their gamma-ray fluence and the afterglow X-ray flux normalized to t=1 d, a proxy for the kinetic energy of the blast wave ($F_{X,1}~F_{gamma}^1.01). An even tighter correlation is evident between E_{gamma,iso} and L_{X,1} for the subset of 13 bursts with measured or constrained redshifts. The remaining 20% of the bursts have values of F_{X,1}/F_{gamma} that are suppressed by about three orders of magnitude, likely because of low circumburst densities (Nakar 2007). These results have several important implications: (i) The X-ray luminosity is generally a robust proxy for the blast wave kinetic energy, indicating nu_X>nu_c and hence a circumburst density n>0.05 cm^{-3}; (ii) most short GRBs have a narrow range of gamma-ray efficiency, with ~0.85 and a spread of 0.14 dex; and (iii) the isotropic-equivalent energies span 10^{48}-10^{52} erg. Furthermore, I find tentative evidence for jet collimation in the two bursts with the highest E_{gamma,iso}, perhaps indicative of the same inverse correlation that leads to a narrow distribution of true energies in long GRBs. I find no clear evidence for a relation between the overall energy release and host galaxy type, but a positive correlation with duration may be present, albeit with a large scatter. Finally, I note that the outlier fraction of 20% is similar to the proposed fraction of short GRBs from dynamically-formed neutron star binaries in globular clusters. This scenario may naturally explain the bimodality of the F_{X,1}/F_{gamma} distribution and the low circumburst densities without invoking speculative kick velocities of several hundred km/s.Comment: Submitted to ApJ; 9 pages, 2 figures, 1 tabl

    A Spitzer IRAC Census of the Asymptotic Giant Branch Populations in Local Group Dwarfs. II. IC 1613

    Full text link
    We present Spitzer Space Telescope IRAC photometry of the Local Group dwarf irregular galaxy IC 1613. We compare our 3.6, 4.5, 5.8, and 8.0 micron photometry with broadband optical photometry and find that the optical data do not detect 43% and misidentify an additional 11% of the total AGB population, likely because of extinction caused by circumstellar material. Further, we find that a narrowband optical carbon star study of IC 1613 detects 50% of the total AGB population and only considers 18% of this population in calculating the carbon to M-type AGB ratio. We derive an integrated mass-loss rate from the AGB stars of 0.2-1.0 x 10^(-3) solar masses per year and find that the distribution of bolometric luminosities and mass-loss rates are consistent with those for other nearby metal-poor galaxies. Both the optical completeness fractions and mass-loss rates in IC 1613 are very similar to those in the Local Group dwarf irregular, WLM, which is expected given their similar characteristics and evolutionary histories.Comment: Accepted by ApJ, 26 pages, 10 figures, version with high-resolution figures available at: http://webusers.astro.umn.edu/~djackson

    Luminous carbon stars in the Magellanic Clouds

    Get PDF
    We present ground-based 3 micron spectra of obscured Asymptotic Giant Branch (AGB) stars in the Magellanic Clouds (MCs). We identify the carbon stars on the basis of the 3.1 micron absorption by HCN and C2H2 molecules. We show evidence for the existence of carbon stars up to the highest AGB luminosities (Mbol=-7 mag, for a distance modulus to the LMC of 18.7 mag). This proves that Hot Bottom Burning (HBB) cannot, in itself, prevent massive AGB stars from becoming carbon star before leaving the AGB. It also sets an upper limit to the distance modulus of the Large Magellanic Cloud of 18.8 mag. The equivalent width of the absorption band decreases with redder (K-L) colour when the dust continuum emission becomes stronger than the photospheric emission. Carbon stars with similar (K-L) appear to have equally strong 3 micron absorption in the MCs and the Milky Way. We discuss the implications for the carbon and nitrogen enrichment of the stellar photosphere of carbon stars

    Spitzer SAGE-SMC Infrared Photometry of Massive Stars in the Small Magellanic Cloud

    Get PDF
    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer, SAGE-SMC survey database, for which we present uniform photometry from 0.3-24 um in the UBVIJHKs+IRAC+MIPS24 bands. We compare the color magnitude diagrams and color-color diagrams to those of the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 um are a few very luminous hypergiants, 4 B-type stars with peculiar, flat spectral energy distributions, and all 3 known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A & F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.Comment: 23 pages, 17 figures, 5 tables, accepted for publication in the Astronomical Journa

    A Spitzer IRS Spectral Atlas of Luminous 8 micron Sources in the Large Magellanic Cloud

    Full text link
    We present an atlas of Spitzer Space Telescope Infrared Spectrograph (IRS) spectra of highly luminous, compact mid-infrared sources in the Large Magellanic Cloud. Sources were selected on the basis of infrared colors and 8 micron (MSX) fluxes indicative of highly evolved, intermediate- to high-mass stars with current or recent mass loss at large rates. We determine the chemistry of the circumstellar envelope from the mid-IR continuum and spectral features and classify the spectral types of the stars. In the sample of 60 sources, we find 21 Red Supergiants (RSGs), 16 C-rich Asymptotic Giant Branch (AGB) stars, 11 HII regions, 4 likely O-rich AGB stars, 4 Galactic O-rich AGB stars, 2 OH/IR stars, and 2 B[e] supergiants with peculiar IR spectra. We find that the overwhelming majority of the sample AGB stars (with typical IR luminosities ~1.0E4 L_sun) have C-rich envelopes, while the O-rich objects are predominantly luminous RSGs with L_IR ~ 1.0E5 L_sun. We determine mean bolometric corrections to the stellar K-band flux densities and find that for carbon stars, the bolometric corrections depend on the infrared color, whereas for RSGs, the bolometric correction is independent of IR color. Our results reveal that objects previously classified as PNe on the basis of IR colors are in fact compact HII regions with very red IRS spectra that include strong atomic recombination lines and PAH emission features. We demonstrate that the IRS spectral classes in our sample separate clearly in infrared color-color diagrams that use combinations of 2MASS data and synthetic IRAC/MIPS fluxes derived from the IRS spectra. On this basis, we suggest diagnostics to identify and classify, with high confidence levels, IR-luminous evolved stars and HII regions in nearby galaxies using Spitzer and near-infrared photometry.Comment: 46 pages, 9 figures; accepted for publication in AJ; abstract abridge

    Estimation of the dust mass-loss rates from AGB stars in the Fornax and Sagittarius dwarf Spheroidal galaxies

    Get PDF
    To study the effect of metallicity on the mass-loss of AGB stars, we have conducted mid-infrared photometric measurements of AGB stars in the Sagittarius and Fornax Dwarf Spheroidal Galaxies ([Fe/H]=-1.1 and -1.3) with the 10-micron camera of VISIR at the VLT. These observations combined with previous near-infrared photometric measurements allow us to estimate mass-loss rates in these galaxies. We show here that the observed AGB display dust-driven mass-loss. Dust mass-loss rate are found to be in the range 0.2×10101.3×108\times10^{-10}-1.3\times10^{-8} M_{\odot}yr1^{-1} for the observed AGB stars in SgrD and around 5×1011\times10^{-11} M_{\odot}yr1^{-1} for the observed star in Fornax

    Carbon-rich dust production in metal-poor galaxies in the Local Group

    Get PDF
    We have observed a sample of 19 carbon stars in the Sculptor, Carina, Fornax, and Leo I dwarf spheroidal galaxies with the Infrared Spectrograph on the Spitzer Space Telescope. The spectra show significant quantities of dust around the carbon stars in Sculptor, Fornax, and Leo I, but little in Carina. Previous comparisons of carbon stars with similar pulsation properties in the Galaxy and the Magellanic Clouds revealed no evidence that metallicity affected the production of dust by carbon stars. However, the more metal-poor stars in the current sample appear to be generating less dust. These data extend two known trends to lower metallicities. In more metal-poor samples, the SiC dust emission weakens, while the acetylene absorption strengthens. The bolometric magnitudes and infrared spectral properties of the carbon stars in Fornax are consistent with metallicities more similar to carbon stars in the Magellanic Clouds than in the other dwarf spheroidals in our sample. A study of the carbon budget in these stars reinforces previous considerations that the dredge-up of sufficient quantities of carbon from the stellar cores may trigger the final superwind phase, ending a star's lifetime on the asymptotic giant branch.Comment: ApJ, in press, 21 pages, 12 figures. Replaced Fig 12, corrected two reference

    The First Empirical Mass Loss Law for Population II Giants

    Full text link
    Using the Spitzer IRAC camera we have obtained mid-IR photometry of the red giant branch stars in the Galactic globular cluster 47 Tuc. About 100 stars show an excess of mid-infrared light above that expected from their photospheric emission. This is plausibly due to dust formation in mass flowing from these stars. This mass loss extends down to the level of the horizontal branch and increases with luminosity. The mass loss is episodic, occurring in only a fraction of stars at a given luminosity. Using a simple model and our observations we derive mass loss rates for these stars. Finally, we obtain the first empirical mass loss formula calibrated with observations of Population II stars. The dependence on luminosity of our mass loss rate is considerably shallower than the widely used Reimers Law. The results presented here are the first from our Spitzer survey of a carefully chosen sample of 17 Galactic Globular Clusters, spanning the entire metallicity range from about one hundredth up to almost solar
    corecore